Greenblatt, Ethan

Ethan Greenblatt, PhD

Biology relies on quickly adapting to environmental and developmental cues. Large cells such as oocytes and neurons can rapidly alter their proteomes by activating translation when needed. A number of reproductive and neuronal disorders are caused by misregulated translation. By understanding how disease factors control translation at the molecular level, we aim to open a path towards therapeutics for autism and ovarian disorders. My laboratory has developed a model system for studying translational control in its “purest” state in vivo using mature Drosophila oocytes. Mature oocytes are giant cells which are transcriptionally inactive and rely entirely on the translation of stored mRNAs. We study how oocytes control the translation of their stored mRNAs by (1) characterizing translation genome-wide using ribosome profiling and RNA sequencing in wild type and mutant backgrounds (2) identifying novel factors using genetic screens and cell-type specific perturbations, and (3) discovering roles for translation factors in development and aging by studying effects on oogenesis and early embryonic development.

Keywords: Female reproductive biology, reproductive aging, regulation of protein translation, neurodevelopmental disorders, neurodegeneration


Email: ethan.greenblatt@ubc.ca

View website